Name

Section 9.9 Representation of Functions by Power Series

In this section, we will consider a few interesting techniques that will allow us to find a power series that represents a given function. In particular, we will focus on using the formula for the sum of a convergent geometric series to define a power series representation of a particular function. If needed we can move the center of the series, we can perform algebraic operations with a series, or combinations of series, or we can use calculus based operations like differentiation, or integration to create a particular series representation of a given function.

From Section 9.2, we can recall the following theorem:

THEOREM 9.6 Convergence of a Geometric Series

A geometric series with ratio r diverges if $|r| \ge 1$. If 0 < |r| < 1, then the series converges to the sum

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}, \quad 0 < |r| < 1.$$

Ex. 1: If we let a = 1 and r = x, the geometric series sum formula gives us a power series representation for $f(x) = \frac{1}{1-x}$ centered at c = 0.

That is, $f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} (1)(x)^n = \sum_{n=0}^{\infty} x^n$, for |x| < 1. This series converges absolutely on (-1,1).

We will use this geometric power series sum formula to develop many other representations of functions by manipulating values of a, r, and c.

Ex. 2: Use the geometric series sum formula to represent $f(x) = \frac{1}{1-x}$ as a power series centered at c = -1, and find the domain of this power series function.

When we change the center of this power series, we should see $(x+1)^2$, which will show the new center at c = -1. Also, we will be able to find a corresponding change in the domain of the power series representation, since we will be moving the center of the previous interval of convergence, (-1,1).

More Ex. 2:

Ex. 3: Use the geometric series sum formula to represent $f(x) = \frac{4}{3x+2}$ as a power

series centered at c = 2, and find the interval of convergence (domain) of this power series function.

More Ex. 3:

Operations with Power Series Let $f(x) = \sum a_n x^n$ and $g(x) = \sum b_n x^n$. **1.** $f(kx) = \sum_{n=0}^{\infty} a_n k^n x^n$ **2.** $f(x^N) = \sum_{n=0}^{\infty} a_n x^{nN}$ **3.** $f(x) \pm g(x) = \sum_{n=0}^{\infty} (a_n \pm b_n) x^n$

NOTE:

- For simplicity, the properties are stated for series centered at c = 0.

- These operations can change the interval of convergence.

- When two series are summed, the interval of convergence for the sum is the <u>intersection</u> of the intervals of convergence of <u>two original series</u>.

Ex. 4: Use the geometric series sum formula to represent $g(x) = \frac{4x-7}{2x^2+3x-2}$ as a

power series centered at c = 0, and find the interval of convergence (domain) of this power series function.

More Ex. 4:

Still More Ex. 4:

Even More Ex. 4:

Ex. 5: Use the geometric series sum formula to represent $f(x) = \ln(1-x^2)$ as a

power series centered at c = 0, and find the interval of convergence (domain) of this power series function.

More Ex. 5:

Still More Ex. 5:

Ex. 6: Use the geometric series sum formula to represent $f(x) = \arctan(x)$ as a power series centered at c = 0, and find the interval of convergence (domain) of this power series function.

More Ex. 6:

Still More Ex. 6: